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In many textbooks attention is drawn to the close analogy that seems to exist between the
“Electron-in-a-Box”-wave functions ¥, and their LCAO-MO counterparts y; (J =n) for the
movement of an electron in a z-system. It is often implied that the “wave lengths” A of ¥,
and 4 of ¢s (J ==) which satisfy to a high degree the relation A4 = 4, have the same physical
meaning. It is shown that this is not the case. /A for a linear system (e.g. a one-dimensional
“Electron-in-a-Box”’-model) is directly connected with the momentum of the electron and
therefore with its kinetic energy according to the deBroglie relation. However, there is no such
simple relationship between A and the corresponding kinetic energy component in LCAO-MO’s
ys. (The necessary two-center kinetic energy integrals have been computed for 1s-type atomic
orbitals.)

Daxs les textes élémentaires de chimie théorique on attire souvent 'attention sur I'analogie
qui semble exister entre les fonctions d’onde ¥, pour un modéle «Electron-in-a-Box» et les
fonctions correspondantes LCAO-MO s (J =n) déerivant le mouvement d’un électron dans
un systéme zz. En particulier cette comparaison implique que les «lengueurs d’onde» A de ¥,
et A de s (J=n), qui satisfont pratiquement la relation A = 1, ont la méme signification
physique. Dang ce travail on montre, que ceci n’est pas le cas. Pour un systéme linéaire (c.a.d.
un modeéle linéaire du type «Electron-in-a-Box») A est reliée directement & la quantité de
mouvement et par 14 & ’énergie cinétique, par la relation de deBroglie. Par contre on ne trouve
pas une dépendance analogue entre 4 et la composante correspondante de I'énergie cinétique
dans une orbitale moléculaire LCAO ys. (Les intégrales bicentriques pour les composantes
d’énergie cinétique nécessaires & ce calcul ont é6é déterminées pour des orbitales atomiques du
type 1s.)

In vielen elementaren Textbiichern wird die Aufmerksamkeit auf die scheinbar enge Ver-
wandtschaft hingelenkt, die zwischen den Wellenfunktionen ¥, fir ein , Electron-in-a-Box”-
Modell und den entsprechenden LCAO-MOs yy (J =n) fiiv die Bewegung eines Elektrons in
einem s-System besteht. Unter anderem wird oft implizit angenommen, daB die ,,Wellenlén-
gen® A der Funktion ¥, und 4 von ys (J =n), die weitgehend der Bedingung A = 1 geniigen,
die gleiche physikalische Bedeutung haben. In dieser Arbeit wird gezeigt, dal} dies nicht der
Fall ist. Fiir ein lineares System (z. B. ein eindimensionales , Electron-in-a-Box’’-Modell) ist
A iiber die deBroglie’sche Beziehung direkt mit dem Impuls und damit mit der kinetischen
Energie des Elektrons verkniipft. Im Cegensatz dazu existiert keine einfache Beziehung
zwischen A und der entsprechenden Komponenten der kinetischen Energie in einem LCAO-MO
ys. (Die notwendigen Zweizentrenintegrale der kinetischen Energie wurden fir Atomorbitale
vom 1s-Typus berechnet.)
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A free electron which moves unrestricted and therefore with constant velocity
v along an axis {e.g. the z-axis) posesses the kinetic energy

Eu:%mﬂ:fz— (1)
2m

where m is the mass of the electron and p = mv its momentum. The movement of
the electron is described by a periodic wave-function

V)=V £ A4). (2)
The periodicity A of W(z) depends on the momentum p according to the deBroglie-
relation (A = Planck’s constant):
h
A = —, 3
p 3)

A is called the deBroglie wave length associated with the momentum p. Inserting
(3} into (1), one obtains for the kinetic energy of a free moving electron

h2
~ m )
or expressed in atomic units*:
222 19.74
BT =" )

As the simplest example for a bound electron, the one-dimensional “‘electron-
in-a-box”-model is discussed in most elementary texts on quantum chemistry. The
aim is to acquaint the student with the behaviour of an electron, the movement of
which is restricted by a potential V(x) to a limited space (here the ‘“box” of length
L). For the “box”-model the potential V(z) is assumed to be of the form:

V@)=0 if 0<z<L (6)
Vi@®)=co if x<Oorz>0L.

Therefore the wave function ¥(z) describing the movement of the electron inside
the “box” [where V(z) = 0] must be of the type (2). However, according to well
known principles, the wave function ¥(x) has to vanish for < 0 and z > L:

P0)=Y(IL)=0. (7)

This leads to the quantum condition (8) for the periodicity A of the electron wave
function ¥(z) in the interval 0 to L:

2L
A==" (8)
where n, the quantum number, can take the values n =1, 2, 3, ... Insertion of
(8) into (4) yields the eigenvalues E, for the system:
h? 2
Ay PR )
n=1,2,3,...
Exypressed in atomic units:
72 4.93
En—-’_——z—L—z-'?’bg: Lz"l’bz. (10)

* 1 a.u. of energy = 27.2 eV, 1 a.u. of length = 0.53 A.
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To each eigenvalue B, of the energy of the electron in a “box” of length L, thero
corresponds an eigenfunction ¥,(x) (“wave-function”) which can be shown to
have the normalized form (c.f. Fig. 1):

V() = ]/%sin <’l’;i> O<wz<IL. (1)
n=1,2,3, ...

The functions ¥p(z) form an orthonormal set (Integration domain from 0 to L).
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Fig. 1. “Electron-in-a-box”’-model. (E in units of #2/2L?)

If the electron moves in a three-dimensional box of length, width and depth
Ly, Ly, L, then by a simple extension of the previous arguments the following
set of eigenvalues [corresponding to (9)] is obtained :

Enxnynz = Eﬁi’;’ + E;Z,) + E;fz)

B2 [ [nz\2 Ty \2 Nz \2
= gullr) 2+ ()] 42
ng=1,2,3,...;0y,=1,2,83, ...;m,=1,2,3, ...

Assuming that the “box’ is a tetragonal prism with Ly = L, = L and L, =Z-L
where Z > 1, then the lowest M eigenvalues with

M<y3-Zz (13)

depend on ng only: ny=1,2, ... M; ny=n, = 1. It is in this sense that the
movement of an electron in an elongated, three-dimensional box may be treated
as an essentially one-dimensicnal problem.

Note that all the energies E, B, and Ey, 4, », [formulae (4), (9) and (12)] are
purely the kinetic energy of the electron.

In LCAO molecular orbital models the space to which the electron is restricted
is determined by the set of atomic orbitals ¢, over which the linear combination

7 Theoret. chim. Acta (Berl.) Vol. 6
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y extends
p= 20y (14)
73

The square of the coefficients, ¢? is a measure for the probability of finding the
electron in the space spanned by ¢, (or more precisely by #2, assuming ¢, to be a
real function). The crossterms 2¢,c, measures the probability of finding the elec-
tron in the overlap region ¢, ¢,.

We shall restrict our considerations to an LCAO~-MO-model of the Wheland-
type, that is to one in which the overlap integrals

Smf = <¢u l ‘75v> (15)
are different from zero only for bound centers y and ».
Sup= 1 (normalized AO’s) (16)

Su = 8 (if  bonded to »; = 0 otherwise) .

Considering a chain of Z equally spaced AQ’s ¢, one obtains under the above
assumptions the following solutions to the corresponding eigenvalue-eigenvector
problem :

ey = (0 + @sB)/(1 + Sz,) (17)
J=1,2,3,...,2.

In this expression the coefficients x, are defined as

xJ=2cos<Z”ji); J=1,2,3,....% (18)

and the parameters « and § have their usual meaning with respect to a model
hamiltonian 5#:

o= LGu | H | bus B={u|# |, ubonded tow. (19)
The linear combinations corresponding to the eigenvalues (17) are
Y2 S g (P
¥ = V(J+ Dazws 250 <Z+1> P (20)

In the case of a purely linear system, the Wheland-model (neglecting overlaps

between non bonded centers) may be used only if S < £ -cos ( d > [~ L if Z is

Z4+1
large]. Otherwise the overlap matrix will be no longer positive definite and the
results of the eigenvalue-eigenvector-problem relativ to 5 become meaningless.

Many textbooks point to the close analogy that exists between the functions
Wa(x) for an electron in a one-dimensional ‘“box’ and the linear combinations
pyif n = J [e.f. formulae (11) and (20)]. This analogy is emphasised in graphical
representations in which both functions are superimposed, as shown in Fig. 2.
From this, certain conclusions are either drawn explicitely or are at least tacitely
implied by the graphical representations. The one we are going to investigate more
closely concerns the kinetic energy of an electron in an LCAO-MO v of the type
(20).

A change in sign between two consecutive coefficients ¢y, and cy,e1 of py
[formula (20)]

B 2 D (TIBN _Z
CTu = |/m sm<m),1pJ-#z=16J,4¢y 21
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corresponds to a node in ;. For linear systems the number of nodes in py is
J — 1 that is the same number as in the “electron-in-a-box’-wave function
¥, () [formula (11)] with n = J. If the length of the space spanned by the linear
combination (14) and therefore by s is I, then we may associate with each

4 ~, ” ~
// \\ N\,
‘2//4 N N w %(Z’}
S\ \\‘ /,
TS CTTAN
o N P
% - — ~ %(\Z')

¥z

Tig. 2. Comparison of the “electron-in-a-box”’-wavefunction ¥»(x) with the corresponding LCAO-MOs v (Z = 6)

wave funection (linear combination) wy & “‘wave length” 1, in the same sense we
did for the “electron-in-a-box’:

“Electron-in-a-box’’ LCAO-MO (Wheland)

Wave fet. o) Ys = 2 Cju Pu
M
nodes; length n—1;L J—1;1 (22)
2L 21
wave-length A= — A= 5

This means that a periodicity A can be associtated with each LCAO-MO y; of a
linear system and we may have the tendency to think of it as a sort of deBroglie
wave length. This is in fact what Fig. 2 tries to suggest (wrongly as we shall see!).
The kinetic energy 7'y of an electron in the orbital s can be split into the

components
Ty=Toe+Toy+ Tz, (23)

x referring to the long axis of the system as in the analogous threedimensional
“box” model discussed previously. As a corrollary to (22), and by an intuitive
extension of the results quoted under (12) and (13), we would expect that the

7*
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z-component 7'y, of the kinetic energy for an electron in the orbital ¢ is given —
at least in a first approximation — by the expression (24):
’ n 2

T Jz = m . J . (24)
T, and T, should be independent of J, if we assume that relation (13) still holds.
(The length ! of our system is proportional to Z and the maximum value of J = Z).
Primed values refer to the “guess” suggested by the comparison (22). From (24)
follows that

a) T, is proportional to J2 for a system of fixed number (Z) of AOs (and there-
fore of fixed length [), and that

b) 7', decreases for fixed values of J with increasing length I, proportional to
1

—lé—'
More precisely, if [ is of the general form ! = a + bZ [see later; formula (36)],
then 7", ~ (a 4 bZ)2 or:

(T3 ~ Jf(a + b2) (@5)
and

1
(Tya) =~ (a}]) + (B]J)Z . (26)

This expected behaviour of 7';, is represented schematically in Figs. 3 and 4,

where we have chosen the constants @ = b = 1. Note that under these assump-

tions the kinetic energy component 77 1, of the orbital vz, ; (Z = odd) is
2 2T

independent of Z, according to (24). Conclusion a) is in strong qualitative contra-
diction to what would be expected on the basis of the virial theorem, according to
which 7'y and therefore gTJx should decrease with increasing J. However, the
assumption of linear combinations ¢y with fixed basis functions ¢, (i.e. with
constant orbital exponent {) presupposes a rather particular type of potential,
which deviates considerably from a potential which is simply the sum of Cou-
lomb terms.

We shall now show that these conclusions suggested by the seemingly close
analogy between the ‘“‘electron-in-a-box™ model and the LCAO-MO-model are
not valid and that the periodicity A defined for the latter can not be identified
even qualitatively with the deBroglie wave-length /.

For simplicity we are going to use 1s-type AOs ¢, as basis functions in the
linear combinations (14) and (20).

1 1 -
bu=(19) = y=exp(—Lr) == ¢ & (27)

7, is the distance from the electron to the center y, { is the orbital exponent and
ou = {7, The kinetic energy (in atomic units) associated with an electron in ¢,
is given by

T, =

ro[ "R

(28)
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Figs. 3and 4, Expected behaviour of the kinetic energy component 7.scof an electron in a LCAO-MO w5 of 1s AOs,
1
according to the comparison (22). (T;Z)E and (T; x) ~ 2 calculated from (25) and (26) with @ =b =1. ([ =Val-
ues for J = (Z + 1)/2 when Z = odd)



102 H. Bauvmany and E. HEILBRONNER:

According to (12) the same energy would be that of an electron in a cubic box
(Lg = Ly = L, = L) of length

L_J?;~]/§ 54

Fo= e (29)

The kinetic energy 7'y associated with the orbital yy (20) is calculated from

{30) where T is the kinetic energy operator

>
R Ty=<Lyps | T|ys) (30)
T can be written as the sum of the operators corresponding to the components
TJa:; TJ:I/: TJZ of TJ

TeTot Ty+ T, (31)

Inserting (20), (28) and (31) into (30) we obtain:
Tyz= (%6 + x5 T, 2)/(1 + %585) (32)
Ty =Tz (36 + 27 T (1 + 25 (33)

Sis defined according to (15) and (16), s is given by (18) and 7'y, 4, Loy = T,z
are the kinetic energy corrections associated with the overlap region ¢, ¢, of
bonded centers:

T = <$ | To | 8> (34)
le,y = T/w,z = <¢,u ] Ty ] ¢v> = <¢’u ! T, | ¢v> . (35)

These integrals, computed by numerical methods are given in the appendix
(Tab. 2, Fig. 7). Note that these corrections can be negative.

In Tab. 1 and in Fig. 5, 6 we show the results obtained for chains of Z 1s-AOs
(27) equally spaced at distances I, such that the overlap between nearest neighbours
is 8 = 0.25. This is a value close to the one found for neighbouring 2p-A0s in
n-electron systems and one for which the Wheland scheme (16) is a satisfactory
approximation. (For { = 4 this would correspond to a bond length I, = 3.56 a.u.)

Comparing Figs. 3 and 4 with Figs. 5 and 6 it is immediately apparent that
certain aspects of the dependence of the kinetic energy components calculated
according to (32) and (33) are in serious disagreement with the expectations based
on the intuitive “‘electron-in-a-box™ analogy.

T 5y = Ty, depend markedly on J, increasing with increasing values of J. The
absolute change in 7', (or T',) going from 7', to T'sy is roughly 1 of the corresp-
onding change in the x component 7' s, so that Ty, + Tz, contribute about % to
the total change in kinetic energy when going from J = 1 to J = Z. From the box
model we would have expected no change in Ty, and T'j,, the increase in the
kinetic energy being absorbed in its totality in the xz-component (13).

A comparison of Figs. 3 and 5 shows that for the “inner” orbitals (i.e. those

1
which yield orbital energies &7 nearest to ), the dependence of (7';;)® on J, as
obtained from (25) and (32), is qualitatively the same. Also for systems with
7 = odd the component 7, . associated with theMO ¢, ; is again a constant.

2 T2

However, the limiting values 7', and T, converge for Z — oo to limits which are
quite different from those expected for the box model: 715 (Z — oo) does not go
to zero and Tz (Z — oc) converges to a much lower value than expected.



Table 1. Kinetic enerqy components Trzy, Tsy ond T

Wheland approximation with § = 1 for nearest neigh-

Kinetic Energy Components of LCAO-MO’s

associated with a LCAO-MO ys of 1s — AOs

bours
Z J Tz Try =T Ts
2 1 0.10256 0.15064 0.40384
2 0.27350 0.19338 0.66026
3 1 0.08295 0.14573 0.37441
2 0.16667 0.16667 0.50000
3 0.34196 0.21050 0.76295
4 1 0.07436 0.14358 0.36152
2 0.12377 0.15594 0.43565
3 0.22524 0.18131 0.58786
4 0.38438 0.22111 0.82660
5 1 0.06982 0.14245 0.35471
2 0.10256 0.15064 0.40384
3 0.16667 0.16667 0.50000
4 0.27350 0.19338 0.66026
5 0.41144 0.22788 0.86719
6 1 0.06712 0.14177 0.35067
2 0.09049 0.14762 0.38573
3 0.13458 0.15864 0.45186
4 0.20679 0.17670 0.56019
5 0.31184 0.20297 0.71777
6 0.42941 0.23237 0.89415
7 1 0.06539 0.14134 0.34807
2 0.08295 0.14573 0.37441
3 0.11519 0.15379 0.42277
4 0.16667 0.16667 0.50000
5 0.24250 0.18563 0.61376
6 0.34196 0.21050 0.76295
7 0.44183 0.23548 0.91278
8 1 0.06421 0.14104 0.34630
2 0.07790 0.14447 0.36684
3 0.10256 0.15064 0.40384
4 0.14106 0.16026 0.46158
5 0.19714 0.17429 0.54571
6 0.27350 0.19338 0.66026
7 0.36564 0.21642 0.79848
8 0.45072 0.23770 0.92610
9 1 0.06337 0.14083 0.34504
2 0.07436 0.14358 0.36152
3 0.09386 0.14846 0.39079
4 0.12377 0.15594 0.43565
5 0.16667 0.16667 0.50000
6 0.22524 0.18131 0.58786
7 0.30007 0.20002 0.70011
8 0.38438 0.22111 0.82660
9 0.45727 0.23934 0.93593

103
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Table 1 (Continued)

zZ J Tre Toy =T Ts
10 1 0.06275 0.14068 0.34412
2 0.07177 0.14293 0.35764
3 0.08761 0.14689 0.38140
4 0.11154 0.15288 0.41730
5 0.14537 0.16134 0.46806
6 0.19122 0.17281 0.53683
7 0.25069 0.18768 0.62604
8 0.32270 0.20568 0.73407
9 0.39936 0.22485 0.84906
10 0.46222 0.24057 0.94336
11 1 0.06228 0.14056 0.34341
2 0.06982 0.14245 0.35471
3 0.08295 0.14573 0.37441
4 0.10256 0.15064 0.40384
5 0.12994 0.15748 0.44490
6 0.16667 0.16667 0.50000
7 0.21431 0.17858 0.57146
8 0.27350 0.19338 0.66026
9 0.34196 0.21050 0.76295
10 0.41144 0.22788 0.86719
11 0.46605 0.24153 0.94911
12 1 0.06192 0.14047 0.34286
2 0.06831 0.14207 0.35245
3 0.07938 0.14484 0.36906
4 0.09577 0.14894 0.39364
5 0.11840 0.15459 0.42759
6 0.14845 0.16211 0.47267
7 0.18722 0.17181 0.53083
8 0.23574 0.18394 0.60361
9 0.29381 0.19846 0.69073
10 0.35836 0.21460 0.78756
11 0.42130 0.23034 0.88197
12 0.46907 0.24229 0.95364
13 1 0.06163 0.140490 0.34243
2 0.06712 014177 0.35067
3 0.07659 0.14414 0.36487
4 0.09049 0.14762 0.38573
5 0.10953 0.15238 0.41428
6 0.13458 0.15864 0.45186
7 0.16667 0.16667 0.50000
8 0.20679 0.17670 0.56019
9 0.25546 0.18887 0.63320
10 0.31184 0.20297 0.71777
11 0.37237 0.21811 0.80858
12 0.42941 0.23237 0.89415
13 0.47150 0.24289 0.95728
14 0.06140 0.14034 0.34208

1
2 0.06617 0.14153 0.34924
3 0.07436 0.14358 0.36152
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Table 1 (Continued)

v/ J Trz Toy = Ty Ty

4 0.08632 0.14657 0.37946
5 0.10256 0.15064 0.40384
4] 0.12377 0.15594 0.43565
7 0.15075 0.16268 0.47611
8 0.18434 017108 0.52651
9 0.22524 0.18131 0.58786
10 0.27350 0.19338 0.66026
11 0.32781 0.20696 0.74173
12 0.38438 0.22111 0.82660
i3 0.43617 0.23406 0.90428
14 0.47347 0.24339 0.96023
15 1 0.06121 0.14029 0.34179
2 0.06539 0.14134 0.34807
3 0.07255 0.14313 0.35881
4 0.08295 0.14573 0.37441
5 0.09699 0.14924 0.39547
6 0.11519 0.15379 042277
7 0.13818 0.15954 0.45726
8 0.16667 0.16667 0.50000
9 0.20131 0.17533 0.55196
10 0.24250 0.18563 0.61376
11 0.28994 0.19749 0.68492
12 0.34196 0.21050 0.76295
13 0.39472 0.22370 0.84211
14 0.44183 0.23548 0.91278
15 0.47509 0.24379 0.96267

This is brought out more dramatically in Fig. 6 which clearly shows the strong
1

deviation from linearity of the plot of (T s,) T 2 yg. Z. As a matter of fact the curves
for fixed J do not even diverge if Z goes to infinity, but converge to a finite limit.
This means that the “wave length” 4 — in sharp contrast to the deBroglie period-
icity A — can go to infinity without the corresponding energy component 7',
going to zero. Furthermore the kinetic energy 7', is not even linked in a unique
way to A, as it is quite easy to pick two orbitals from two systems with differing Z
such that 2I[J = 1 is the same for both orbitals which will nevertheless exhibit
different kinetic energy components 7' s;.

It follows that the analogy suggested by graphical representations such as
that shown in Fig. 2, or more explicitely by the comparison (22) are misleading.
One cannot compare A to the periodicity 4 of a corresponding “electron-in-a-box”-
model.

If [, is the distance between two consecutive centers, the length I of the system
is

I=Z -0+ k (36)
where k is a correction which allows for the “overshooting” of the electron beyond
the centers 1 and Z. We can construct an “‘electron-in-a-box” model with L, = [
which will yield a constant value Ez 41, independent of Z, if k = 2[; so that

2



Table 2. Kinetic energy corrections (34) and (35) associated with the overlap region of bonded
1s-AOs ¢/,¢, 9511

Clo ;2 T,lw,aa £ 2 Tyy, y =72 T,z 2 Ty
> > >
={2 | T =02 | Ty | ) =2 u| T|»)
0.0 0.16667 0.16667 0.50000
01 0.16435 0.16589 0.49615
0.2 0.15828 0.16375 0.48578
0.3 0.14937 0.16052 0.47041
0.4 0.13849 0.15643 0.45134
0.5 0.12629 0.15167 0.42962
0.6 0.11334 0.14639 0.40612
0.7 0.10004 0.14075 0.38154
0.8 0.08673 0.13487 0.35646
0.9 0.07385 0.12875 0.33135
1.0 0.06130 0.12263 0.30656
11 0.04936 0.11651 0.28238
1.2 0.03814: 0.11044 0.25902
1.3 0.02770 0.10447 0.23664
14 0.01807 0.09865 0.21536
1.5 0.00928 0.09298 0.19523
1.6 0.00133 0.08750 0.17632
1.7 -0.00580 0.08222 0.15863
1.8 —-0.01215 0.07715 0.14215
1.9 -0.01772 0.07230 0.12688
2.0 —0.02258 0.06768 011277
21 —0.02676 0.06328 0.09980
2.2 -0.03031 0.05911 0.08790
2.3 —0.03327 0.05515 0.07703
2.4 —0.03570 0.05142 0.06713
2.5 —0.03764 0.04789 0.05814
2.6 -0.03914 0.04458 0.05001
2.9 —0.04024 0.04146 0.04267
2.8 —0.04097 0.03853 0.03608
2.9 —0.04138 0.03578 0.03017
3.0 —0.04150 0.03320 0.02489
3.1 —0.04138 0.03079 0.02019
3.2 —0.04106 0.02855 0.01603
3.3 —0.04053 0.02644 0.01235
3.4 —0.03984 0.02448 0.00912
3.5 —0.03903 0.02266 0.00629
3.6 —0.03808 0.02095 0.00382
3.7 —0.03707 0.01938 0.00168
3.8 -0.03596 0.01791 -0.00014
3.9 —-0.03479 0.01654 —0.00172
4.0 —0.03360 0.01528 -0.00305
4.1 -0.03236 0.01410 —-0.00417
4.2 -0.03110 0.01301 —0.00509
4.3 —0.02984 0.01200 —0.00585
4.4 —0.02858 0.01106 —0.00646
4.5 —0.02732 0.01019 —0.00694
4.6 —0.02609 0.00940 -0.00730
4.7 —0.02485 0.00865 -0.00756
4.8 ~0.02366 0.00797 -0.00773
4.9 —0.02249 0.00733 —-0.00783
5.0 -0.02135 0.00675 —0.00786

¢ = Orbital exponent in 1s-AO (27). [, = Distance between centers x4 and v in a.u. Energy
of C_z Tm;,x, ;2 T‘l,w,y = C_—2 Tyv,z and {2 T/,w =2 T/,w,:c + 2 C—zTIn),y in atomic units.
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Figs. 5and 6. Behaviour of the kinetic energy component Tyz of an electron in a LOAO-MO ys of 1s AOs, according
t0 (32). Ty calculated with an overlap S = 0.25 and T'yy,e = —0.03845 a.u. (see Tab. 2
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Fig. 7. Kinetic energy corrections Typ,z (34), Tup,y = Tup,z (85) and Tyv= Tyv,x + 2T uy,y for 1s AOs (27). En-
ergy for interatomic distance d = I, in units of {2 a.u.
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expression (36) becomes I = [(1 + Z). If we set Ez+1 = %+ a.u., to make it

2
identical with 7z + 1 of the non bonding MOs ¥z +1(Z = odd), we find that
2 2

ly = 2.72 a.u., which would correspond to an LCAO model of 1s-AOs having an
overlap § = 0.4 between bonded. centers. Note that according to (33) the kinetic
energy for non bonding MOs is independent of the value of 8.

Appendix
Computation of the kinetic energy compounts 7'y, and Tuy,y = Tp».. for 1s AOs [c.f.
(34); (35)].
The distance between two bonded 15-AOs (27) of orbital exponent { is I, Setting I, { = R
we obtain in atomic units:
[ = (ou + 02)/ B, v = (ou — o)/ E]
o +1 2w
->
wl el =-ropa [ || e-Rﬂ{w o) -

J
p#=1 p=—1 =0

(4 +0) (v = 1) R(u +3) (o 1)2}
= S vy e S
o +1 27

@ Tl - mosa || jrﬁﬂ{(uw)—
U=l vl =0

(6 +9) (42 = 1) (L= ) cosp Rl +9) (u? = 1) (1 — ) cos? p } dudvdgp.  (38)

(B ~»)? 2(u — )
Partial integration over » and ¢ yields
Twa = (] Fx |v) = [eB (- R?%6 + R/6 — & — 3/R — 3/R?) + A]{® (39)
Tww= (] ?y vy =[e"2(R/6 + £ + 3/2R + 3/2R?) ~4/2] 2 (40)
Tw = Tuw,e + 2 Typ,y = [e 2 (— RY6 + B2 +% )¢z, (41)
A stands for the integral
<
A= R2/4J e logg'u'—_l—ii [— Bu® + 5u* + 2 Ru® — 6u? — Ry +1]du (42)
v —

1

which has to be integrated numerically. The results for the integrals (39) to (41) in the interval
R =0 to 5 a.u. are shown in Tab. 2 and Fig. 7.
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